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Exact solutions for Stokes flow in and around a
sphere and between concentric spheres
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A general method is suggested for deriving exact solutions to the Stokes equations
in spherical geometries. The method is applied to derive exact solutions for a class
of flows in and around a sphere or between concentric spheres, which are generated
by meridional driving on the spherical boundaries. The resulting flow fields consist
of toroidal eddies or pairs of counter-rotating toroidal eddies. For the concentric
sphere case the exact solution when the inner sphere is in instantaneous translation
is also derived. Although these solutions are axisymmetric, they can be combined
with swirl about a different axis to generate fully three-dimensional fields described
exactly by simple formulae. Examples of such complex fields are given. The solutions
given here should be useful for, among other things, studying the mixing properties
of three-dimensional flows.

1. Introduction
Explicit exact solutions to the field equations have an intrinsic interest of their

own. This is especially so if they are for bounded geometries and for flows that
are realizable, at least in principle. If their structure is simple they help us, as
building blocks, to more clearly visualize more realistic and complex flows. But
even apart from this interest, they play a practically useful role, even in these
days of much computing power, in helping to check new numerical schemes of
computation. This benchmarking role is well appreciated; less well known is that
there are certain situations where exact solutions are almost essential, where purely
numerical computations are too inaccurate to make reliable progress. An example
of the latter is mixing by chaotic advection in laminar flows: any errors in the field
calculation can build up exponentially along material lines making mixing calculations
unreliable beyond a few periods (Souvaliotis, Jana & Ottino 1995). It is for this reason
that so much of our understanding of two-dimensional mixing has had to come from
studies of the eccentric annular mixer (Aref & Balachandar 1986; Funakoshi 2008)
for which an exact solution exists (Jeffery 1922; Kazakia & Rivlin 1978). Recent
progress in the more practical problem of mixing by translating stirrers has been
made possible by the discovery of analytical solutions for such motions (Finn & Cox
2001; Cox & Finn 2007).

It is a fact that exact solutions are much harder to compute in three-dimensional
geometries and as a consequence are even more valuable. For example Bajer &
Moffatt (1990) were able to make use of a general exact solution to first demonstrate
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chaotic streamlines in a steady bounded three-dimensional flow, that within a
sphere. Cartwright, Feingold & Piro (1996), in their analysis of chaotic advection
in spherical Couette flow, make use of the leading term in a perturbation solution in
Reynolds number found much earlier by Munson & Joseph (1971). The latter had
considered viscous swirling flow between concentric rotating spheres and determined
the expansion of the field upto the seventh order in Reynolds number.

This paper deals with certain exact solutions for Stokes flow in and around a
sphere and between two concentric spheres. We are especially interested here in flows
that are caused by meridional driving on the boundaries; for the concentric sphere
case, we also deal with given instantaneous translational motion of the inner sphere.
The method by which these solutions are derived is discussed in § 2 while the exact
solutions are given in § 3. Although these solutions are for axisymmetric flows, they
can be combined with a non-coaxial swirl to generate fully three-dimensional flows
which are of great interest. Examples of these are briefly considered in § 4.

2. Analysis
Consider steady Stokes flow inside or outside the unit sphere or between two

concentric spheres of dimensionless radii 1 and r0 (0 < r0 < 1), respectively. Suitably
normalized governing equations are

∇ · u = 0, (2.1a)

∇2u = ∇p, (2.1b)

where u and p are the dimensionless velocity and pressure fields, respectively. It will
be convenient to use the Papkovich–Neuber–Imai representation (see Shankar 2007)

u = ∇(r · A + B) − 2A (2.2a)

p = 2∇ · A (2.2b)

for the field, where A and B are harmonic vector and scalar fields, respectively, and
r is the position vector. Although we are interested in generating three-dimensional
fields we shall do so by utilizing exact axisymmetric fields. Thus if (r, θ, φ) is a
spherical polar coordinate system with θ = 0 coinciding with the z-axis of a Cartesian
system (x, y, z) with the same origin, we shall seek solutions that are independent of
the azimuthal coordinate φ.

We will in general be needing both interior eigenfunctions, i.e. those that are
regular at the origin, and exterior eigenfunctions, i.e. those that decay at infinity; the
former or latter alone will be sufficient for the bare sphere case. In order to utilize
representation (2.2) we will need suitable harmonic fields. For the spherical geometry
considered here these are given, in another context, in Shankar (2007, § 11.1); and
it turns out to be convenient to use the scalar field B and the vector field A1 given
there

Bi(r, θ) = rn+1Pn+1(cos θ), (2.3a)

Ai
1(r, θ) = rnP ′

n(cos θ)eφ, (2.3b)

Be(r, θ) = r−nPn−1(cos θ), (2.4a)

Ae
1(r, θ) = r−n−1P ′

n(cos θ)eφ. (2.4b)
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In the above, the superscripts indicate interior and exterior, respectively, the Pn(cos θ)
are Legendre polynomials and eφ is the unit vector in the φ-direction. Here and in
what follows P ′

n(cos θ) = dPn(cos θ)/dθ . We will however need one more vector field
and one is tempted to use the field A2 given in the same source. But, as a referee has
pointed out, this leads to formulae that are unnecessarily complicated. Simpler is to
use the following harmonic fields suggested by the referee:

Ai
2(r, θ) = rn+1 {(n + 1)Pn(cos θ)er − P ′

n(cos θ)eθ} , (2.5a)

Ae
2(r, θ) = r−n {nPn(cos θ)er + P ′

n(cos θ)eθ} . (2.5b)

If we utilize interior and exterior fields (2.3)–(2.5) over the full range of integers
n and rearrange indices suitably, we get the following general expansions for the
axisymmetric velocity field between two spheres:

ur (r, θ) =

∞∑
n=1

[annrn−1 + cnn(n + 1)rn+1 − αn(n + 1)r−n−2 − γnn(n + 1)r−n]Pn(cos θ),

(2.6a)

uθ (r, θ) =

∞∑
n=1

[anr
n−1 + cn(n + 3)rn+1 + αnr

−n−2 + γn(n − 2)r−n]P ′
n(cos θ), (2.6b)

uφ(r, θ) =

∞∑
n=1

[enr
n + εnr

−n−1]P ′
n(cos θ), (2.6c)

where an, cn, αn, γn, en and εn are arbitrary scalars. In future we will drop the argument
of the Legendre polynomials with the understanding that it is always cos θ and that
the prime denotes differentiation with respect to θ . For the case of the containing
sphere alone, we will only need the terms involving non-negative powers of r , i.e. in
this case αn = γn = εn = 0 for all n; for the exterior problem only the αn, γn and εn

will be needed.
It should be observed that the azimuthal field completely uncouples from the

other two components and can be determined independently of them. As they stand,
the above expansions can be used to satisfy essentially arbitrary but compatible
boundary conditions on the two solid surfaces of the concentric spheres or the single
solid surface of a bare sphere, for which the interior or exterior expansions alone will
be needed. Note that the (ur, uθ ) field can be derived from a Stokes stream function
Ψ with ur = Ψ,θ/(r

2 sin θ) and uθ = −Ψ,r/(r sin θ). The stream function corresponding
to field (2.6 a, b) is given, up to an arbitrary constant, by

Ψ (r, θ) = −
∞∑

n=1

[
rn+1

n + 1
an + rn+3cn − r−n

n
αn − r−n+2γn

]
sin θP ′

n(cos θ). (2.7)

Although expansions (2.6) are for general boundary conditions on the solid surfaces
of the spheres, our use of them here is for the specialized purpose of generating
exact solutions. We derive these by the following method. For some special boundary
conditions of simple form, for example with ur vanishing on the boundaries and say uθ

of the form sin jθ , we seek the expansion coefficients using the orthogonality properties
of the Pn and the expansion of their derivatives in terms of sinmθ, m � j (see Lebedev
1972). If the former is used in (2.6a) and the latter in (2.6b) one is led in each case
to a simple set of linear algebraic equations for a finite number of coefficients. The
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Figure 1. Axisymmetric streamline patterns for flows described by exact solutions. (a) Inner
sphere in instantaneous motion in the z-direction; r0 = 0.1. (b)–(d ) Flows generated by
meridional driving as in § 3.2. (b) j = 1, r0 = 0.8, V0 = 0, V1 = 1.0, (c) j = 2, r0 = 0.5, V0 = 1,
V1 = 0, (d ) j = 3, r0 = 0.3, V0 = 3, V1 = 1.

judicious use of a symbolic manipulation program can help make the calculations
quite easy to perform.

3. Exact solutions
3.1. Inner sphere in uniform motion

Suppose the inner sphere is instantaneously moving with unit velocity in the z-
direction with the outer sphere at rest. Then we just require that (ur, uθ , uφ) =
(cos θ, − sin θ, 0) on r = r0 and u = 0 on r = 1. Following the procedure outlined in § 2
we find that the only non-zero expansion coefficients are a1, c1, α1 and γ1 which are
explicitly given by

c1 = 3r0(1 + r0)/[2(1 − r0)
3(4 + 7r0 + 4r2

0 )], (3.1a)

α1 = r3
0 (1 + r0 + r2

0 )/[(1 − r0)
3(4 + 7r0 + 4r2

0 )], (3.1b)

γ1 = −2c1 − 3α1, (3.1c)

a1 = γ1 − 4c1 − α1. (3.1d)

Typical streamlines of this axisymmetric flow field are shown in figure 1(a) for the
case where r0 = 0.1; not surprisingly, the field consists of a toroidal vortex some of
whose streamlines begin and end on the inner sphere.
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When considering the simple cases of flows interior or exterior to a single sphere,
the sphere will be taken to be of unit radius and the velocity scales the one associated
with that sphere. In the case of a single sphere moving in the z-direction the only
non-zero coefficients are

α1 = 1/4 (3.2a)

γ1 = −3/4 (3.2b)

consistent with the well-known formula for Stokes flow around a moving sphere
(Batchelor 1967, equation (4.9.12)).

3.2. Meridional driving on the inner and outer boundaries

The exact solutions considered here deal with situations where the fluid is driven by
meridional driving on the spherical boundaries. Specifically we consider axisymmetric
flows where the boundary conditions take the form

ur (r0, θ) = 0, (3.3a)

ur (1, θ) = 0, (3.3b)

uθ (r0, θ) = V0 sin jθ, (3.4a)

uθ (1, θ) = V1 sin jθ, (3.4b)

where j is an integer. The motivation for the above assumed form is that it is precisely
such a form with j = 1 that appears in Bajer & Moffatt (1990, equation (2.7)) and with
j =2 that appears in Cartwright et al. (1996, equation (3.16)). The exact solutions for
the cases j = 1, 2, 3 and 4 are as follows:

3.2.1. Case j = 1

We find in this case also that the only non-zero expansion coefficients are a1, c1, α1

and γ1. However they are now given by

c1 = −[V1(2 + r0) + V0(r0 + 2r2
0 )]/[(1 − r0)

2(4 + 7r0 + 4r2
0 )], (3.5a)

α1 = −r3
0 [V1(1 + 2r0) + V0(2 + r0)]/[(1 − r0)

2(4 + 7r0 + 4r2
0 )], (3.5b)

γ1 = −V1 − 2c1 − 3α1, (3.5c)

a1 = 2γ1 + 2α1 − 2c1. (3.5d)

Streamline patterns when r0 = 0.8, V1 = 1 and V0 = 0 are shown in figure 1(b). Now we
have a single toroidal eddy, symmetrically placed about z = 0, all of whose streamlines
are closed.

For flow in a sphere the only non-zero coefficients are

a1 = 1, (3.6a)

c1 = −1/2. (3.6b)

The streamlines are those due to a single toroidal eddy as above. Note that (3.6) is
in agreement with (2.7) of Bajer & Moffatt (1990). For the exterior flow the only
non-zero coefficients are α1 = − γ1 = − 1/2.

3.2.2. Case j = 2

In this case the only non-zero expansion coefficients are a2, c2, α2 and γ2. Let

D = (1 − r0)
2(4 + 16r0 + 40r2

0 + 55r3
0 + 40r4

0 + 16r5
0 + 4r6

0 ). (3.7)
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Then the non-zero coefficients are given by

c2 = −2[V1(2 + 4r0 + 6r2
0 + 3r3

0 ) + V0r
2
0 (3 + 6r0 + 4r2

0 + 2r3
0 )]/(3D), (3.8a)

α2 = −4r4
0 [V1r0(3 + 6r0 + 4r2

0 + 2r3
0 ) + V0(2 + 4r0 + 6r2

0 + 3r3
0 )]/(3D), (3.8b)

a2 = −2V1/3 − α2 − 5c2, (3.8c)

γ2 = (2a2 + 6c2 − 3α2)/6. (3.8d)

Figure 1(c) shows typical streamlines when r0 = 0.5, V0 = 1 and V1 = 0. There are two
axisymmetric toroidal eddies, symmetrically placed above and below z = 0; all the
streamlines are closed.

The only non-zero coefficients in the internal sphere are

a2 = 1, (3.9a)

c2 = −1/3. (3.9b)

As in the concentric spheres case the field consists of two toroidal eddies. For the
exterior flow the only non-zero coefficients are α2 = −2/3 and γ2 = 1/3.

3.2.3. Case j = 3

Now the only non-zero expansion coefficients are a1, c1, α1, γ1, a3, c3, α3 and γ3. Let

D = (1 − r0)
2(4 + 16r0 + 40r2

0 + 80r3
0 + 140r4

0 + 175r5
0

+ 140r6
0 + 80r7

0 + 40r8
0 + 16r9

0 + 4r10
0 ) (3.10)

Then α3 and γ3 are given by

α3 = −8r5
0 [V1r

2
0 (5 + 10r0 + 8r2

0 + 6r3
0 + 4r4

0 + 2r5
0 )

+ V0(2 + 4r0 + 6r2
0 + 8r3

0 + 10r4
0 + 5r5

0 )]/(5D), (3.11a)

γ3 = 8r3
0 [V1r

2
0 (7 + 14r0 + 12r2

0 + 10r3
0 + 8r4

0 + 6r5
0 + 4r6

0 + 2r7
0 )

+ V0(2 + 4r0 + 6r2
0 + 8r3

0 + 10r4
0 + 12r5

0 + 14r6
0 + 7r7

0 ]/(15D). (3.11b)

It follows then that

a3 = 6α3 + 14γ3 + 16V1/15, (3.12a)

c3 = −(a3 + α3 + γ3 + 8V1/15)/6. (3.12b)

The n= 1 terms can be uncoupled and solved to give

α1 = r3
0

V1(1 + 2r0) + V0(2 + r0)

5(1 − r0)2(4 + 7r0 + 4r2
0 )

, (3.13a)

γ1 = −r0

V1(3 + 6r0 + 4r2
0 + 2r3

0 ) + V0(2 + 4r0 + 6r2
0 + 3r3

0 )

5(1 − r0)2(4 + 7r0 + 4r2
0 )

, (3.13b)

c1 =
(1 − r−3

0 )α1 + (1 − r−1
0 )γ1

1 − r2
0

, (3.13c)

a1 = 2(−c1 + α1 + γ1). (3.13d)

Streamline patterns for this case are shown in figure 1(d ) when r0 = 0.3, V0 = 3 and
V1 = 1. Now, since there is meridional driving in the same direction on both surfaces,
we have three pairs of counter-rotating toroidal eddies. All the streamlines are closed.
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For the spherical container alone the only significant coefficients are

a1 = −1/5, (3.14a)

c1 = 1/10, (3.14b)

a3 = 16/15, (3.14c)

c3 = −4/15. (3.14d)

The field consists of three toroidal eddies. For the exterior problem the non-zero
coefficients are α1 = −γ1 = 1/10, α3 = −4/5 and γ3 = 4/15.

3.2.4. Case j = 4

The only non-zero coefficients now are a2, c2, α2, γ2, a4, c4, α4 and γ4. Let

D = (1 − r0)
2(4 + 16r0 + 40r2

0 + 80r3
0 + 140r4

0 + 224r5
0 + 336r6

0 + 399r7
0

+ 336r8
0 + 224r9

0 + 140r10
0 + 80r11

0 + 40r12
0 + 16r13

0 + 4r14
0 ). (3.15)

Then

α4 = −64r6
0 [V1r

3
0 (7 + 14r0 + 12r2

0 + 10r3
0 + 8r4

0 + 6r5
0 + 4r6

0 + 2r7
0 )

+ V0(2 + 4r0 + 6r2
0 + 8r3

0 + 10r4
0 + 12r5

0 + 14r6
0 + 7r7

0 )]/(35D), (3.16a)

γ4 = 16r4
0 [V1r

3
0 (9 + 18r0 + 16r2

0 + 14r3
0 + 12r4

0 + 10r5
0 + 8r6

0 + 6r7
0 + 4r8

0 + 2r9
0 )

+ V0(2 + 4r0 + 6r2
0 + 8r3

0 + 10r4
0 + 12r5

0 + 14r6
0 + 16r7

0 + 18r8
0 + 9r9

0 )]/(35D),

(3.16b)

c4 = −(9α4 + 28γ4 + 64V1/35)/8, (3.16c)

a4 = −(7c4 + α4 + 2γ4 + 16V1/35). (3.16d)

If now

D = (1 − r0)
2(4 + 16r0 + 40r2

0 + 55r3
0 + 40r4

0 + 16r5
0 + 4r6

0 ), (3.17)

the n= 2 terms uncouple and are given by

α2 = 8r4
0 [V1r0(3 + 6r0 + 4r2

0 + 2r3
0 ) + V0(2 + 4r0 + 6r2

0 + 3r3
0 )]/(21D), (3.18a)

γ2 = −4r2
0 [V1r0(5 + 10r0 + 8r2

0 + 6r3
0 + 4r4

0 + 2r5
0 )

+ V0(2 + 4r0 + 6r2
0 + 8r3

0 + 10r4
0 + 5r5

0 )]/(21D), (3.18b)

c2 = [(r0 − r−4
0 )α2 + 2(r0 − r−2

0 )γ2]/[2(r0 − r3
0 )], (3.18c)

a2 = (−6c2 + 3α2 + 6γ2)/2. (3.18d)

Naturally, the field in this case will consist of either four eddies if there is driving on
only one boundary or of four pairs of counter-rotating eddies in case there is driving
in the same direction on both boundaries.

For the spherical container alone the only non-zero coefficients are

a2 = −2/7 (3.19a)

c2 = 2/21 (3.19b)

a4 = 8/7 (3.19c)

c4 = −8/35 (3.19d)

while for the exterior problem the non-zero coefficients are α2 = 4/21, γ2 = −2/21,

α4 = −32/35 and γ4 = 8/35.
It is clear from the four cases discussed above that in general exact solutions exist

for every integer value of j . That for each j one will have either j or 2j toroidal
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Figure 2. Meridionally driven flows with different driving protocols on the two surfaces.
r0 = 0.7, V1 = 1, j0 = 3, j1 = 2. (a) V0 = 0.1 and (b) V0 = 0.5.

eddies depending on whether driving is on a single boundary or on both in the
same direction. From the way the calculations proceed and the general pattern of the
non-zero coefficients found above, one can state the form of their distribution for
the general case. For the concentric sphere case, for even j , the overall pattern is of
the form {aj , cj , αj , γj , aj−2, cj−2, αj−2, γj−2, . . . , a2, c2, α2, γ2}; for odd j the pattern
is of the form {aj , cj , αj , γj , aj−2, cj−2, αj−2, γj−2, . . . , a1, c1, α1, γ1}. The patterns for
the interior and exterior problems of a single sphere follow immediately.

It should be noted that one can handle the situation where the meridional
components on the spheres are of the form sin j0θ and sin j1θ, respectively, on
the two spheres, with j0 �= j1. All one needs to do is to superpose the solutions of
the two individual cases with a non-zero meridional component on only one of the
spheres. Figure 2 shows two such flows, differing only in the intensity of the inner
driving, for the case where j0 = 3 and j1 = 2. If the driving protocols had been the
same, one would have had either two pairs of counter-rotating eddies or three such
pairs, as in figure 1(d ). Now, however, there is considerable distortion of the eddy
structure with no symmetry about the x–y plane. When V0 is relatively small as in
figure 2(a) the outer flow, with two toroidal eddies, dominates; however, even in this
case there is a single counter-rotating eddy on the upper part of the inner sphere.
Consideration of the driving on the inner sphere shows that the other two eddies
normally adjacent to it cooperate with the outer flow and are subsumed by it. With
increasing V0, as in figure 2(b), the distortion increases with, however, the number
of eddies remaining in the same. With further increases in V0 so that V0 � V1, the
field behaves as if the driving was on the inner sphere alone with the outer field only
tending to distort the field slightly.

3.3. Pure swirl about the z-axis

Finally, we consider the case where the inner and outer spheres rotate about the
z-axis with angular speeds ω0 and ω1, respectively, i.e. u(r0, θ) = (0, 0, ω0r0 sin θ) and
u(1, θ) = (0, 0, ω1 sin θ). Now only expansion (2.6c) is needed and it trivially follows
that the field is given by

uφ(r, θ) = sin θ
[
(ω1 − r3

0ω0)r − r3
0 (ω1 − ω0)r

−2
]
/(1 − r3

0 ). (3.20)

This result is well known (see for example Munson & Joseph 1971).
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Figure 3. Three-dimensional streamline patterns in flows generated by superposing, on
meridional flows, a swirling flow whose axis is at 90◦ to the z-axis. The views seen are of three
streamlines in each case as seen along the x-axis, i.e. the swirl axis. j = 2, r0 = 0.5,
V0 = 0, ω0 = 1, ω1 = 0. (a) V1 = 0.1 and (b) V1 = 5/3.

4. Discussion and conclusion
The exact solutions that have been obtained in § 3 are for axisymmetric flow fields

generated by axisymmetric boundary conditions. However our primary interest is
in fully three-dimensional flows. But as Cartwright et al. (1996) have shown it is
possible to generate complex three-dimensional fields by superposing axisymmetric
fields which are not coaxial. Such a superposition is possible because of the linearity
of the Stokes equations and the use of a concentric geometry. We will briefly illustrate
such a use of the exact solutions with a simple example.

Consider concentric spheres subjected to meridional forcing of the type considered
in § 3.2. Let us superpose on this flow a purely swirling flow of the type considered
in § 3.3 but we now have the swirl taken place about an axis that is tilted at an
angle α to the z-axis. It is immediately clear that for α �= 0, π the composite flow
field will be fully three-dimensional. Since both the primary meridional field and the
swirling flow are given by simple exact solutions, the three-dimensional field is now
described by simple exact formulae involving the finite expansions and a coordinate
transformation. Figure 3 shows two such three-dimensional flow fields generated by
meridional forcing of the type sin 2θ together with swirl about an axis at 90◦ to the
z-axis. The tilt angle has been chosen so that it will be comparatively easy to visualize
what is happening. In both cases r0 = 0.5, V0 = 0, ω1 = 0, ω0 = 1, the only difference
being that V1 = 0.1 in figure 3(a) but is 5/3 in figure 3(b), i.e. the meridional flow is
of much greater intensity in the latter.

Note that in both figures 3(a) and 3(b) the view is in the x-direction, i.e. along the
direction of the swirl, and what is seen are three streamlines each passing through the
same three points. The streamlines s1, s2 and s3 pass through the points with (x, y, z)
coordinates (0.51, 0.0, 0.01), (0.9, 0.0, 0.2) and (0.7, 0.0, 0.5), respectively. Note that if
V1 had been 0 all the streamlines would be the closed circles of pure swirling flow; if
ω1 had been 0 the streamlines would be similar to those seen in figure 1(c). Although
it is difficult from this view alone to see what is happening, other views show that
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although the swirl is the strong primary flow in figure 3(a), the effect of the weak
meridional component is inexorable. Rather then having closed circular paths, the
streamlines near the inner sphere begin to diverge outwards and as they do so they
increasingly come under the influence of the meridional flow. But the nature of the
meridional flow is such that near the poles the flow weakens and the influence of the
swirl once again takes over. This is why one sees all three streamlines in figure 3(a)
move downwards and into the swirl near the plane y = 0. Note that s1 is most strongly
influenced by the swirl as the starting location has been chosen suitably. On the other
hand both s2 and s3, unlike s1, have two loops in the meridional motion seen on the
upper right of the figure.

The situation is quite different in figure 3(b). Here the meridional motion is
comparable in magnitude to the swirling motion near the inner sphere. Note that s1 is
now not tightly wound around the x-axis because the meridional flow now influences
it much more; and although it cannot be seen in this view there are now loops in the
meridional field. The second streamline now makes many loops in the meridional field
while s3 now most dramatically forms a part of the vortex that starts and ends on
the plane x = 0. Note that when α = 90◦ the field is made up of two non-interacting
parts on either side of this plane. Since our primary purpose was to derive the exact
solutions and show how they can be used, we do not examine these interesting fields
in any detail.

We conclude by pointing out that whereas the flows in or outside the sphere
alone do not depend, following non-dimensionalization, on any parameter, the flows
between concentric spheres involve two parameters, a ratio of length scales r0 and
a ratio of velocity scales V0/V1 (or its inverse). As a consequence these flow fields
should be useful in validating numerical schemes over a large parameter space. The
other use that we can immediately foresee is in studying the mixing properties of
three-dimensional flows, again over a large parameter space.
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